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Abstract—Web developers often write test cases manually
using testing frameworks such as Selenium. Testing JavaScript-
based applications is challenging as manually exploring various
execution paths of the application is difficult. Also JavaScript’s
highly dynamic nature as well as its complex interaction with the
DOM make it difficult for the tester to achieve high coverage. We
present a framework to automatically generate unit test cases for
individual JavaScript functions. These test cases are strengthened
by automatically generated test oracles capable of detecting faults
in JavaScript code. Our approach is implemented in a tool called
PYTHIA. Our preliminary evaluation results point to the efficacy
of the approach in achieving high coverage and detecting faults.

Index Terms—test generation, oracles, JavaScript, DOM

I. INTRODUCTION

JavaScript plays a prominent role in modern web applica-
tions nowadays. To test their JavaScript applications, develop-
ers often write test cases using web testing frameworks such
as SELENIUM (GUI tests) and QUNIT (JavaScript unit tests).
Although such frameworks help to automate test execution, the
test cases need to be written manually, which can be tedious
and inefficient. The event-driven and highly dynamic nature
of JavaScript, as well as its complex runtime interaction with
the Document Object Model (DOM) make it challenging to
effectively write stable test suites that achieve high coverage.

Researchers have recently started exploring test generation
for JavaScript-based applications [1], [9], [10], [12], [16].
However, current web test generation techniques suffer from
two main shortcomings:

1) They all target the generation of event sequences, which
operate at the DOM-level, to change the state of the
application. These techniques fail to capture faults that
do not propagate to an observable DOM state; As
such, they potentially miss a large portion of code-level
JavaScript faults. In oder to capture such faults, effective
test generation techniques need to target the code at the
JavaScript unit-level, in addition to the event-level.

2) Current techniques simplify the test oracle problem in
the generated test cases by simply using generic soft
oracles, such as HTML validation [12], [1], and runtime
exceptions [1]. However, these soft oracles do not cap-
ture many kinds of errors. To be practically useful, unit
testing requires strong oracles to determine whether the
application under test executes correctly at the JavaScript
code unit-level and at the DOM-level. While there has
been some work on the generation of test inputs [16], not

much attention has been paid to the automatic creation
of strong test oracles i.e., assertions. A generated test
case without assertions is not useful since coverage alone
is not the goal of software testing. For such generated
test cases, the tester still needs to manually write many
assertions, which is time and effort intensive.

In this paper, we propose an automated test and oracle
generation technique for JavaScript applications to address
these two shortcomings. Our approach operates through a three
step process. First, it dynamically explores and guides the
application, using a function coverage maximization greedy
method, to infer a test model. Then, it generates test cases
at JavaScript function levels. Finally, it automatically gener-
ates test oracles using mutation testing. Mutation testing is
typically used to evaluate the quality of a test suite [2], or to
generate test cases that kill mutants [5]. In our work, we adopt
mutation testing to generate an oracle that is able to detect a
seeded fault in the JavaScript application.

To the best of our knowledge, our work is the first to
automatically (1) generate unit tests at the function-level for
JavaScript code, and (2) employ mutation testing for test oracle
generation in JavaScript-based applications.

Our main contributions in this work are:
• A method that dynamically guides the exploration of a

web application to maximize function coverage;
• A generic technique to generate JavaScript function-level

unit tests;
• A mutation-based method to create test oracles that can

detect faults in the JavaScript code;
• The implementation of our approach in an open-source

tool called PYTHIA, which requires no browser modifi-
cations, and is hence portable;

II. RELATED WORK

Test generation. Different constraint-solving approaches have
been proposed for test generation. For instance, pathCrawler
[20] combines static and dynamic analysis and performs on-
the-fly exploration of the input space of the application.
Concolic testing has been employed in DART [6] and further
extended in CUTE [17] and PEX [19]. It still remains to be
seen if these approaches scale when applied to dynamic web
applications.

Meta-heuristic search approaches have been used as an
alternative to constraint-based techniques. Examples of such
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approaches are Ribeiro et al. [15], Fraser et al. [3] and Harman
et al. [7]. The success of such methods depends on the
availability of appropriate fitness functions that can properly
guide the solution towards an optimal one [8]. Devising such
a fitness function is a significant challenge.

To overcome the drawbacks of search-based approaches,
Malburg et al. [8] propose to combine constraint-based and
search-based testing. The focus of these techniques is mostly
on input generation to efficiently cover every possible program
flow. In our work, we focus on maximizing the function
coverage of the program instead of state space coverage, as
the number of states can become prohibitively large in web
applications. Further, instead of generating inputs to uncover
errors, we create oracles capable of detecting faults.

Oracle generation. There has been limited work on test oracle
generation for testing. Fraser et al. [5] propose µTEST, which
employs a mutant-based oracle generation technique. It auto-
matically generates unit tests for Java object-oriented classes
by using a genetic algorithm to target mutations with high
impact on the application’s behaviour. In a follow up paper [4],
they extend µTEST to simplify the human understanding of the
generated tests by identifying relevant pre-conditions on the
test inputs and post-conditions on the outputs. At a high level,
our work is similar to µTEST in that we also apply mutation
analysis to create effective test oracles. However, our test
cases and oracles are generated using the dynamic event-driven
model of JavaScript, which has its own unique challenges and
is different from traditional programming languages such as
Java.

Staats et al. [18] address the problem of selecting oracle
data, which is formed as a subset of internal state variables as
well as outputs for which the expected values are determined.
They apply mutation testing to produce oracles and rank the
inferred oracles in terms of their fault finding capability. This
work is different from our approach in that they merely focus
on supporting the creation of test oracles by the programmer,
rather than fully automating the process of test case generation.
Further, they do not support JavaScript.

Web application tests and oracles. Mesbah et al. [12] use
dynamic analysis to construct a model of the application’s state
space, from which event-based test cases are automatically
generated. They use generic and application-specific invariants
as a form of soft oracles. Marchetto and Tonella [9] propose a
search-based algorithm for generating event-based sequences
to test Ajax applications. Our earlier work, JSART [13], auto-
matically infers program invariants from JavaScript execution
traces and uses them as regression assertions in the code.

Saxena et al. [16] combine random test generation with
the use of symbolic execution for systematically exploring a
JavaScript application’s event space as well as its value space.
Closely related to our work is ARTEMIS [1], which supports
automated testing of JavaScript applications. ARTEMIS consid-
ers the event-driven execution model as well as the JavaScript
code’s interaction with the DOM to generate test cases. Our
work is different in two main aspects from these works: (1)

1 var currentDim=20;
2 function cellClicked() {
3 var divTag = '<div id='divElem' />';
4 if($(this).attr('id') == 'cell0'){
5 $(#cell0).after(divTag);
6 $('div #divElem').click(setup);
7 }
8 else if($(this).attr('id') == 'cell1←↩

'){
9 $(#cell1).after(divTag);

10 $('div #divElem').click(function()←↩
{setDim(20)});

11 }
12 }

14 function setup() {
15 setDim(10);
16 $(#startCell).click(start);
17 }

19 function setDim(dimension) {
20 var dim=($('body').width + $('body')←↩

.height))/dimension;
21 currentDim+=dim;
22 $(#endCell).css('height', dim+'px');
23 return dim;
24 }

26 function start() {
27 if(currentDim>20)
28 $(this).width('height', currentDim←↩

+'px');
29 else
30 $(this).remove();
31 }
32 $document.ready(function() {
33 ...
34 $(#cell0).click(cellClicked);
35 $(#cell1).click(cellClicked);
36 });

Fig. 1. JavaScript code of the running example.

they all target the generation of event sequences at the DOM
level, while we generate unit tests at the JavaScript code
level, and (2) they do not address the problem of test oracle
generation and only check against soft oracles (e.g., invalid
HTML). Our work is able to capture errors that occur at the
JavaScript code level by generating effective test cases with
strong oracles.

III. MOTIVATION AND CHALLENGES

In this section, we illustrate the challenges associated with
generating tests in JavaScript applications.
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Figure 1 presents a snippet of a JavaScript application that
we use as a running example throughout the paper. This simple
example contains four main JavaScript functions:

1) cellClicked is bound to the click handler of the
two DOM elements with IDs cell0 or cell1 (Lines
34-35). These two elements become available when
the DOM is fully loaded. Depending on the element
clicked, cellClicked inserts a div element with
ID divElem after the clicked element and makes it
clickable by attaching either setup or setDim as its
event handler.

2) setup calls setDim to change the value of the
currentDim global variable. It further makes an ele-
ment with ID startCell clickable by setting the click
handler to start.

3) setDim receives an input variable. It performs some
computations to set the height value of the css
property of a DOM element with ID endCell and the
value of global variable currentDim. setDim also
returns the computed dimension.

4) start is called when the element with ID startCell
is clicked (Line 16), which either sets the dimension of
the element from which it has ben called, or removes
the element (Lines 27-30).

The first challenge in testing JavaScript applications is that
an error may not become immediately apparent due to the
event-driven nature of the execution. For example, if the ‘+’
sign in Line 21 is mistakenly replaced by ‘-’, the affected
result does not immediately propagate to the observable DOM
state after the function exits. While this mistakenly changes the
value of a global variable, currentDim, which is later used
in start (Line 27), it neither affects the returned value of the
setDim function nor the css value of element endCell.
Therefore, a simple GUI testing approach does not help to
detect the fault in this case. However, a unit test case that
targets individual functions, e.g., setDim in the example,
helps a tester to spot the fault, and thus easily resolve it. This
is why we focus on generating unit tests with oracles in this
paper.

Another challenge in testing JavaScript applications is the
event-driven dynamic nature of JavaScript, and its extensive in-
teraction with the DOM resulting in many execution paths and
states. In the initial state, clicking on cell0 or cell1 takes
the browser to two different states as a result of the if-else
statement in Lines 4 and 8 of the function cellClicked.
Even in this simple example, it can be seen that expanding
either of the resulting states has different consequences due to
different functions that can be potentially triggered. Executing
either setup or setDim in Lines 6 and 10 results in different
execution paths, DOM states, and code coverage. It is this
dynamic interaction of the JavaScript code with the DOM
(and indirectly CSS) that makes it challenging to generate
test cases for JavaScript applications. A related important
challenge is that when unit testing JavaScript functions that
have DOM interactions, such as setDim, the DOM tree in

the state expected by the function has to be present during test
execution, otherwise the test will fail due to a null exception.

IV. APPROACH

Our main goal in this work is to generate test cases coupled
with effective test oracles, capable of detecting regression
JavaScript faults. We assume that the amount of time available
to generate test cases is finite. Consequently, we guide the
test generation to maximize coverage under a given time
constraint. Another goal is to make the oracles as efficient as
possible, so we choose to only include those elements in the
assertions that are absolutely essential in detecting potential
errors.

Our approach automatically generates test cases and oracles
at function-level unit tests which consist of unit tests with
assertions that verify the functionality of JavaScript code at
the function level.

At a high level, our approach is composed of three main
steps:

1) In the first step, we dynamically explore various states of
a given web application, in such a way as to maximize
the number of functions that are covered throughout the
program execution. The output of this initial step is a
State-Flow Graph (SFG) [11], capturing the explored dy-
namic DOM states and event-based transitions between
them.

2) In the second step, test cases are generated at JavaScript
function levels by running the instrumented version of
the application. Through an execution trace obtained,
we extract JavaScript function states at the entry and
exit points, from which function-level unit tests are
generated.

3) To create effective test oracles, we automatically gener-
ate mutated versions of the application. The test oracles
are then generated at the JavaScript code level by
comparing the two execution traces obtained from the
original and the mutated versions.

Next, we describe each of these three steps.

V. MAXIMIZING FUNCTION COVERAGE

As mentioned before, our goal is to generate test cases that
maximize the number of functions covered while exercising
the program’s event space. To that end, our approach combines
dynamic and static analysis to decide which state/event(s)
should be selected for expansion to maximize the probability
of covering uncovered functions. The function coverage maxi-
mization algorithm chooses a next state that has the maximum
value of the sum of the following two metrics:

1) The number of uncovered functions that can potentially
be visited through the execution of DOM events in a
given DOM state; To calculate this metric, our approach
identifies all JavaScript functions that are directly or
indirectly attached to a DOM element as event handlers,
in a given state. When a given function f is set as
the event-handler of a DOM element d, it makes the
element a potential clickable element in a DOM state s.
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By instrumenting the application and dynamically moni-
toring the execution trace, we detect uncovered functions
and any associated clickable elements that have those
functions as event-handlers. In addition, by inferring the
static function call graph of the application, we calculate
the total number of functions that (indirectly) will be
executed if such clickable elements are exercised.

2) The number of DOM elements that can potentially
become clickable elements, i.e., if the event-handlers
bounded to those clickables are triggered, new (uncov-
ered) functions will be executed; To obtain this number,
we statically analyze the previously obtained potential
functions within a given state in search of such clickable
elements. Of course, the functions that can potentially be
attached to such elements should not have been covered
before.

While exploring the application, the next state for expansion
is selected by adding the two metrics and choosing the state
with the highest sum. Note that if multiple clickables with the
same function handler exist in the selected state, we randomly
select one of those and add it to the clickable list of elements.

During the exploration, the state-flow graph, the execution
trace, uncovered functions, as well as new detected clickables
are updated as an event is fired and a new DOM state is
detected.

Going back to our example in Figure 1, in the initial state,
clicking on elements with IDs cell0 and cell1 results in
two different states due to an if-else statement in Lines
4 and 8 of cellClicked. Let’s call the state in which a
DIV element is located after the element with ID cell0 as
s0, and the state in which a DIV element is placed after the
element with ID cell1 as s1. If state s0, with the clickable
cell0, is chosen for expansion, function setup is called.
As shown in Line 15, setup indirectly calls setDim, and
thus, by expanding s0 both of the aforementioned functions
get called by a single click. Moreover, a potential clickable
element is also created in Line 16, with start as the event-
handler. Therefore, expanding s1 results only in the execution
of setDim, expanding s0 results in the execution of functions
setup, setDim, as well as a potential execution of start
in future states. Therefore, our greedy state selection algorithm
chooses s0 to potentially maximize the function coverage.

At the end of this step, we obtain a state-flow graph of the
application that can be used in the test generation step.

VI. GENERATING FUNCTION-LEVEL UNIT TESTS

In the second step,we generate test cases at function-level,
as described below.

To generate unit tests that target JavaScript functions, we
need to log the state of each function at their entry and exit
point during execution. To that end, we automatically intercept
the JavaScript code by setting up a proxy between the server
and the browser, and instrumenting the code to log various
entities at the entry and exit points of functions.

The entities that we log at the entry point of a given
JavaScript function include: (1) function parameters including

passed variables, functions, and DOM elements, (2) global
variables used in the function, and (3) the current DOM struc-
ture just before the function is executed. At the exit point of
the JavaScript function and before every return statement,
we log the state of the (1) return value of the function, (2)
global variables that have been accessed in that function, and
(3) DOM elements accessed in the function. At each of the
above points, our instrumentation records the name, runtime
type, and actual values. The dynamic type is stored because
JavaScript is a dynamically typed language, meaning that the
variable types cannot be determined statically.

Going back to our running example in Figure 1, at the entry
point of setDim, we log the value and type of both the input
parameter dimension and global variable currentDim,
which is accessed in the function. Similarly, at the exit point,
we log the values and types of the returned variable dim and
currentDim.

In addition to the values logged above, we need to capture
the DOM state for functions that interact with the DOM. To
be able to unit test functions that have DOM API calls, the
expected DOM elements need to be present for the function
to proceed. Otherwise, the function may throw an exception
or produce an incorrect result. To mitigate this problem, we
capture the state of the DOM just before the function starts its
execution, and include that as a test fixture in the generated
test case.

In the running example, at the entry point of setDim, we
log the innerHTML of the current DOM as the function
contains several calls to the DOM, such as retrieving the
element with ID endCell in Line 22. We further include in
our execution trace the way DOM elements and their attributes
are modified by the JavaScript function at runtime. Based on
the pattern in which the JavaScript DOM modifications occur,
we can add instrumentation code to record the accessed DOM
elements. The information that we log for accessed DOM
elements includes the ID attribute, the XPath position of the
element and all changed attributes. We use a set collection to
keep the information about DOM modifications, so that we
can record the latest changes to a DOM element without any
duplication within the function. For instance, we record both
width and height properties of the BODY element as well
as the ID and height value of the element endCell.

After instrumenting the application, we run the application
to produce an execution trace that contains:

• Information required for preparing the environment for
each function to be examined in a test case, including
its input parameters, used global variables, and the DOM
tree in a state that is expected by the function, and

• Necessary entities that need to be assessed after the func-
tion is executed, including the function’s output as well
as the touched DOM elements and their attributes (The
actual assessment process is explained in Section VII).

VII. GENERATING TEST ORACLES

In the third step, our approach generates test oracles for the
function-level test cases generated in the previous step.
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Similar to the test generation step (Section VI), the oracle
generation part targets JavaScript code mutations, which are
used to generate assertions for our generated function-level
unit tests.

Our oracle generation technique is a mutation-based pro-
cess, which iteratively executes the following steps:

1) a mutation is generated by injecting a single fault into
the original version of the web application,

2) related entry/exit program states at the DOM and
JavaScript function levels of the mutant and the original
web application are captured,

3) relevant observed state differences at each level are
detected and abstracted into test oracles,

4) the generated test oracles are injected as assertions into
the corresponding test case.

To seed code level faults, we use our recently developed
JavaScript mutation testing tool, MUTANDIS [14]. Mutations
generated by MUTANDIS are selected through a function
rank metric, which ranks functions in terms of their relative
importance from the application’s behaviour point of view.
The mutation operators are chosen from a list of common
operators, such as changing the value of a variable or modify-
ing a conditional statement. Once a mutant is produced, it is
automatically instrumented. We collect a new execution trace
from the mutated program by executing the same sequence of
events that was used on the original version of the application.
We extract the state of each JavaScript function at its entry and
exit points, similar to the function state extraction mechanism
explained in Section VI.

After the execution traces are collected for all the generated
mutants, we generate test oracles by comparing the execution
trace of the original application with the traces we obtained
from the modified versions. Our function-level oracle gener-
ation targets postcondition assertions. The postcondition is
an observable state after the unit test execution. Therefore,
postcondition oracle assertions can be used to examine the
expected behaviour of a given function after it is executed in
a unit test case.

Our technique generates postcondition assertions for func-
tions that exhibit a different exit-point state but the same
entry-point state, in the mutated execution traces. Thus, each
assertion for a function contains (1) the function’s returned
value, and (2) the used global variables in that function.Each
assertion is coupled with the expected value obtained from the
execution trace of the original version.

Due to the highly dynamic, asynchronous, and non-
deterministic behaviour of JavaScript applications, a function
with the same entry state can exhibit different outputs when
executed multiple times. In this case, we need to combine
assertions to make sure that the generated test cases do not
mistakenly fail. Let’s consider a function f with an entry state
entry in the original version of the application (A), with two
different exit states exit0 and exit1. If in the mutated version
of the application (Am), f exhibits an exit state exitm that
is different from both exit0 and exit1, then we combine the
resulting assertions as follows:

assert1(exit1,expRes1)‖assert2(exit2,expRes2),
where the expected values expRes1 and expRes2 are
obtained from the execution trace of A.

Going back to the running example of Figure 1, if we
mutate the plus sign into a minus sign in Line 20, the affected
elements are: the return value of setDim in Line 23, and the
global variable currentDim in Line 21.

The generated assertions that target variables, compare the
value as well as the runtime type against the expected ones.
Assuming that width and height are 100 and 200 accord-
ingly, one such assertion would be: equal(setDim(10),
30). To check the type of the currentDim as the func-
tion exits, we generate: equal(typeof(currentDim),
‘number’).

VIII. TOOL IMPLEMENTATION

We have implemented our JavaScript test and oracle gen-
eration approach in an automated tool called PYTHIA. The
tool is written in Java and is publicly available for download.1

Our implementation requires no browser modifications, and is
hence portable.

Our function coverage maximization technique extends and
builds on top of the dynamic event-driven AJAX crawler,
CRAWLJAX [11]. As mentioned before, to mutate JavaScript
code, we use our recently developed mutation testing tool,
MUTANDIS [14]. For JavaScript code interception, we employ
an enhanced version of WebScarab proxy. This enables us to
automatically analyze the content of HTTP responses before
they reach the browser. To instrument the intercepted code,
Mozilla Rhino2 is used to parse JavaScript code to an AST, and
back to the source code after the instrumentation is performed.
We use Rhino’s APIs to search for program points where
instrumentation code needs to be added. JavaScript function-
level tests are generated in the QUNIT unit testing framework,3

which is capable of testing any generic JavaScript code.

IX. EVALUATION

Our preliminary evaluation results have been very promis-
ing. To empirically assess the efficacy of our test generation
approach, we are currently in the process of conducting a large
study on several real-world web applications.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a framework for testing
JavaScript applications, which automatically generates test
cases accompanied with oracles for individual JavaScript
functions. These test cases are coupled with automatically
generated test oracles capable of detecting faults in JavaScript
code. We implemented our approach in an open-source tool
called PYTHIA. We are currently conducting an empirical
evaluation of PYTHIA on real-world applications to assess the
efficacy of the approach in terms of coverage and fault finding
capabilities.

1 http://salt.ece.ubc.ca/software/pythia/
2 http://www.mozilla.org/rhino/
3 http://qunitjs.com
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